Knowledge-Based Data Management

Reagan W. Moore
San Diego Supercomputer Center

moore@sdsc.edu http://www.npaci.edu/DICE

Data Intensive Computing Environment

Staff

- Reagan Moore
- Chaitan Baru
- Charles Cowart
- Amarnath Gupta
- George Kremenek
- Bertram Ludäscher
- Richard Marciano
- Arcot Rajasekar
- Michael Wan
- Ilya Zaslavsky
- Bing Zhu

Students

- Pratik Mukhopadhyay
- Azra Mulic
- Kevin Munroe
- Paul Nguyen
- Michail Petropolis
- Nicholas Puz
- Pavel Velikhov
- +/- NN

Topics

- Requirements driving development of data handling systems - 7 Scenarios
 - Corresponding features of the SDSC Storage Resource Broker
- Future management requirements
 - Knowledge
 - Information
 - Data

Data Handling Infrastructure

Model-Based Knowledge Management

Rule-based ontology mapping, conceptual-level mediation - CMIX

Data Grid

Data federation across multiple libraries - MIX

Digital Library

 Interoperable services for information discovery and presentation -SDLIP

Data Collection

Information Management - MCAT

Data Handling

Systems for data retrieval from storage systems - SRB

Persistent Archives

Storage of data collections for "the life of the republic" - HPSS

Scenario # I

- Data Assimilation Office
- Data sets are stored on Unitree at NASA Goddard
- Computation is done at NASA Ames
- Re-analyze 10 years of data with a new data assimilation code
- Can the analysis be automated?

Collection-based Data Access

- Automate access through creation of a collection
 - Data sets managed by attributes
 - Data set discovery through use of attributes
- Access across administration domains
 - Connection to remote resource
 - clConnect call
 - Unix file system semantics
 - srbObjCreate / srbObjClose / srbObjRead / srbObjWrite

Collection Attributes

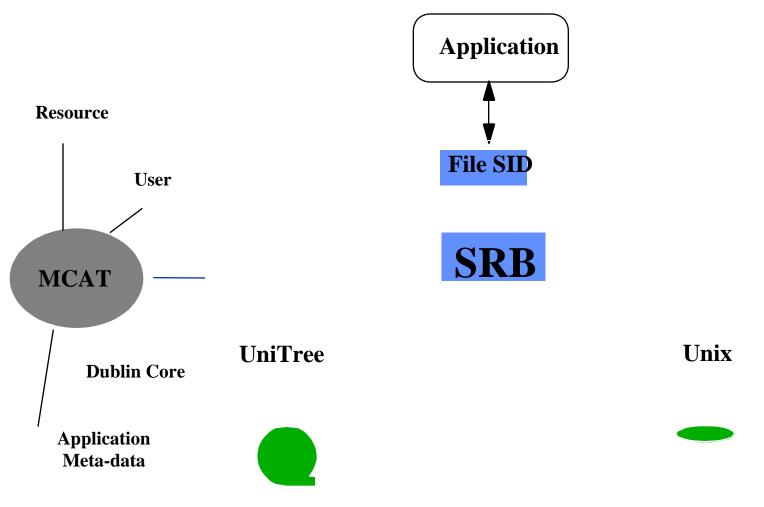
SRB location attributes

 Storage location (IP address), Access protocol, local file name

Unix file attributes

Owner, creation date, size, access control list, ...

Dublin core attributes


Provenance information

Domain specific attributes

Attributes that describe the digital object

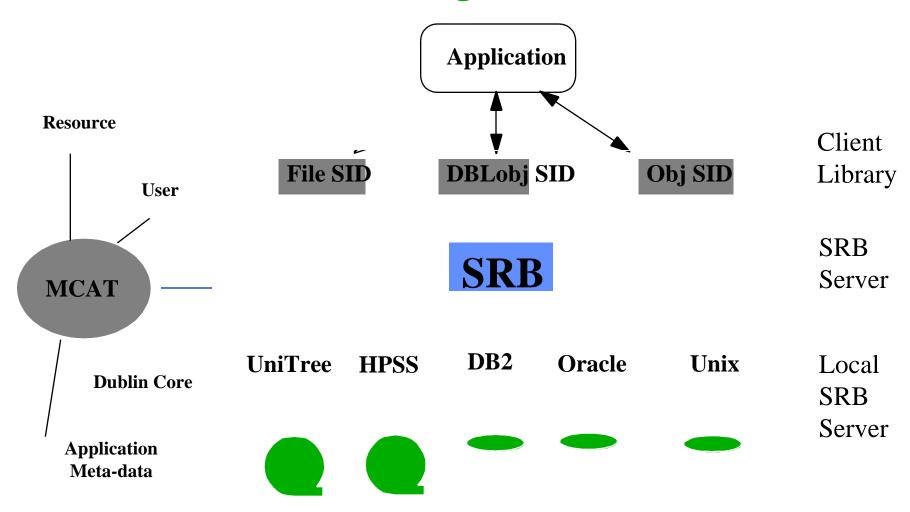
SDSC Storage Resource Broker & Meta-data Catalog - Simplest usage model

An example for creating a high-level data object and writing to it.

The object is created in a storage resource named "unix-sdsc". This resource must have already been registered in MCAT.

```
#define DATATYPE "ascii text"
#define RESOURCE "unix-sdsc"
#define COLLECTION "/srbtest"
int in_fd, out_fd;
int nbytes, tmp;
char buf[BUFSIZE];
srbConn *conn;
/* Connect to the SRB server */
conn = clConnect (HOST_ADDR, NULL ,SRB_AUTH);
/* check to see if the connection was successful */
if (clStatus(conn) != CLI CONNECTION OK) {
   fprintf(stderr,"Connection to SRB server failed.\n");
   fprintf(stderr,"%s",clErrorMessage(conn));
   exit_nicely(conn);
```

```
/* Create a data object with objID = argv[1] */
out_fd = srbObjCreate (conn, MDAS_CATALOG, argv[1],
DATATYPE, RESOURCE, COLLECTION, NULL, -1);
if (out_fd < 0) { /* error */
   fprintf(stderr, "can't create obj \"%s\", status = %d\n", argv[1], out_fd);
   fprintf(stderr,"%s",clErrorMessage(conn));
   exit_nicely(conn);
/* Open a local file with filename = inFileName. */
in_fd = open (inFileName, O_RDONLY, 0);
if (in_fd < 0) { /* error */
   fprintf(stderr, "can't open file\"%s\"\n", inFileName);
   exit_nicely(conn);
/* Read from the local file and write to the just created data object */
while ((nbytes = read(in_fd, buf, BUFSIZE)) > 0) {
  /* Write to the data object */
   tmp = srbObjWrite(conn, out_fd, buf, nbytes);
   if (tmp < nbytes) {
      fprintf(stderr, "Error: Read %d bytes, Wrote %d bytes.\n ",
      nbytes, tmp);
      exit_nicely(conn);
srbObjClose (conn, out_fd);
close (in_fd);
/* Disconnect */
```



Scenario # 2

- NASA Information Power Grid
- Demonstrate distributed data analysis using multiple NASA resources while accessing data objects stored at multiple sites:
 - HPSS at SDSC
 - File systems at Caltech
 - NASA FTP sites
- Support access to legacy systems

SDSC Storage Resource Broker & Meta-data Catalog

Scenario # 3

- California Digital Library
- Provide persistent identifiers (site and access protocol independent)
- Provide support for copies of the data objects
- Provide archival backup for the data collections
- Manage persistence across technology evolution

Logical Resource Naming

- Create a logical resource name that groups multiple physical resources
- Writing to the logical resource name writes to all of the associated physical resources
 - Completion on write to "k" of "n" resources, k < n
- Latency management
 - Access copy stored on lowest latency storage system

Scenario # 4

- NSF NPACI Digital Sky Project
- Support formation of a 5-million image, 10-TB image collection for 2MASS
- Store images in an archive
- Sort images into containers based on spatial location rather than temporal order as seen by the telescope

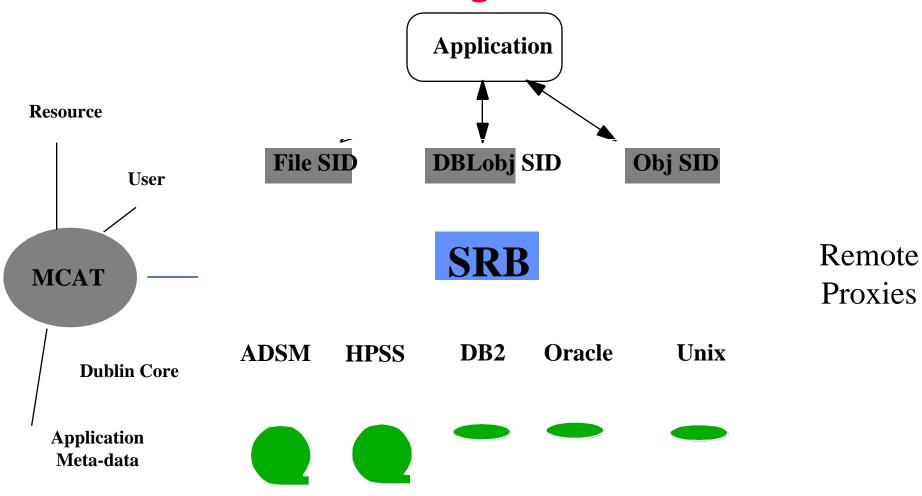
Containers

- Containers are used to aggregate data sets
 - Minimizes number of files seen by archives
 - Improves latency of access for related files
- Containers have a maximum size
 - When write into a container, a new container is automatically started when the initial container is full
 - Metadata catalog manages mapping from object to container
- Containers are cached on disk after retrieval from archive

An example for creating a Container and putting an SRB object in it.

The container is created in a storage resource named "cont-sdsc". This resource must have already been registered in MCAT.

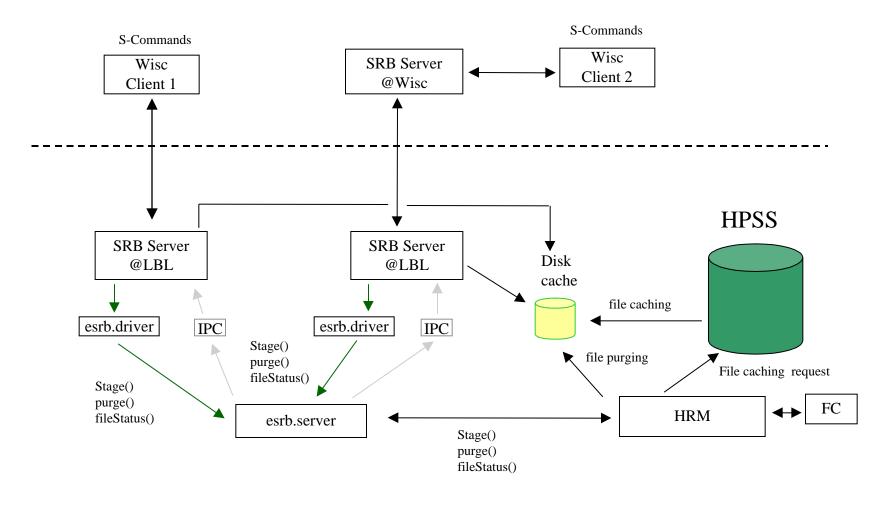
```
/* Create a container */
status = srbContainerCreate (conn, MDAS_CATALOG, CONT_NAME,
 NULL, CONT RESC, CONT SZ);
if (status < 0) {
      fprintf(stderr,"Unable to create container %s, status = %d\n",
        CONT_NAME, status);
      fprintf(stderr,"%s",clErrorMessage(conn));
      clFinish(conn);
      exit (1);
/* Create a data object */
sprintf (tmpName,
       "%s&CONTAINER=%-s", OBJ_NAME, CONT_NAME);
out_fd = srbObjCreate (conn, MDAS_CATALOG, tmpName,
NULL, NULL, COLLECTION, NULL, -1);
if (out fd < 0) { /* error */
```



Scenario # 5

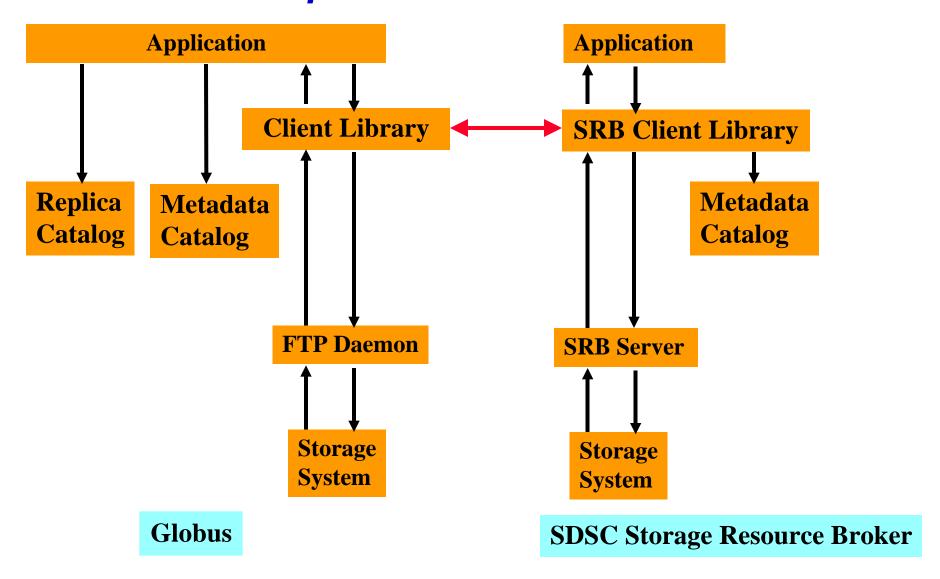
- DOE ASCI Data Visualization Corridor
- Provide interactive visualization of terabytesized data objects, retrieved from remote archive
- Subset data objects at the storage system
 - Latency management mechanism
- Page data as needed from remote source into rendering system

SDSC Storage Resource Broker & Meta-data Catalog



Scenario # 6

- DOE Particle Physics Data Grid
- Support replicas of data objects to minimize access latency
- Support access to local resource managers
 - Stage command to force prefetch
 - Status command to track progress of resource manager
- Support interoperation between grids



Particle Physics Data Grid - Replication System

Interoperation between Grids

Scenario # 7

- NSF NPACI Neuroscience database federation
- Provide rule-based access to multiple data collections
- Support access based on domain concepts, rather than collection attributes
- Define relationship of retrieved images

Differentiating between Knowledge, Information, and Data

- Concepts are tags that describe reality
 - Examples are nervous systems, neurons, axons, dendrites
- Metadata are tags that describe attributes of data
 - Examples are provenance attributes (Dulbin core), or data object parameters
- Knowledge is the relationship between concepts
 - Topic Maps (ISO 13250) organize relationships between concepts
- Information is metadata
 - Information repositories (databases) organize metadata
- Data are digital objects that represent reality
 - Storage systems organize data

Protein Localization Results nervous_system has PROTEIN ISOFORM SPECIES IMAGE ID cns chicken has has rhombencephalon has cerebellum cerebellar_cortex has vermis has has molecular_layer purkinje_cell_layer has / has has inner_third middle_third outer_third purkinje_cell_soma has [2 results] purkinje_cell_dendrite nucleus has has main_branches spiny_branchlet has [18 results] [2 results] has has has has [61 results] branching point shaft has has [10 results] mitochondria multivesicular_body [2 results] [4 results] [6 results] [2 results]

Collection Architecture

Ingest Manage Access

Knowledge

Relationships between Concepts Knowledge Repository for Rules Knowledge or Topic-Based

Query

Information

Attributes Semantics

Information Repository

Attribute- based

Query

Data

Fields
Containers
Folders

Storage (Replicas, Persistent IDs)

Feature-based

Query

Process

Infrastructure

Process

Unified Model for Relationships

Relationships quantify rules:

- Rules for defining attributes
- Rules for organizing attributes into schema
- Rules for feature extraction
- Rules governing data set creation

Relationships quantify associations:

- Organization of concepts into topic maps
- Clustering of data into containers
- Semantic mapping
- Ontology mapping

Architecture Interfaces

Manage Access Ingest KQL Relationships Knowledge or Knowledge XTM DTD Repository for Topic-Based Between Knowledge Rules Query Concepts (Topic Maps / Model-based Access) EMCAT / MIX Attribute- based Information Attributes Information Repository **Semantics** Query (Data Handling System - Storage Resource Broker) Data Fields Storage Grids Feature-based (Replicas, **Containers** Query Persistent IDs) **Folders**

Functionality	Benefit to user
SRB ARCHITECTURE	
C/S architecture	Supports remote clients
Distributed SRB servers	Access to distributed storage resources
Distributed storage resources	Access to distributed storage resources
Global namespace	Need to remember only a single, logical name for file/dataset
Support for 64-bit file size	Support up to 2^64 byte files in 64- or 32- bit architectures
Logical storage resources (LSR)	Supports abstraction from physical storage (location xparency), replication, declustering
Capability-based definition of storage resources	Provides abstract definition of storage resource
Replication of data sets	Improved reliability, availability, and performance
Replication across "k" of "n" sites (k <n)< td=""><td>Graceful degradation during network and/or storage system failure</td></n)<>	Graceful degradation during network and/or storage system failure
Registration – register "legacy" data set as a SRB object	Ability to manage legacy (pre-existing) data using SRB
Third-party copy operation	Efficient peer-to-peer copying of data
Data partitioning	Partition a data set across multiple storage resources
Containers to support transparent clustering/collocating data sets	Improved response time in accessing multiple, related files; overcomes namespace restrictions imposed by underlying storage resource; efficient utilization of storage resource;
Caching support for containers	Improved response time
Prefetch of files	Provides scheduled, overlapped I/O; improved response time
Support for network of distributed caches	Improved response time
Support for multiple archive resources in containers	Provides redundancy and failover capability

Functionality	Benefit to user
METADATA CATALOG	
Attributed-based data set identification	Allows search and discovery of data sets via user-defined attributes
Collection-based (hierarchical) management of distributed digital	Logical view of data organization is different from physical
objects	organization of directory structures
Persistent identifiers for data namespace	Physical independence, location transparency
Support for Dublin core metadata	Use of industry-standard metadata definition
Unix filesystem metadata	Compatibility with UNIX filesystem
User definable metadata for data sets	Provides user-defined attribute-based search of data sets
User defined metadata for collections – 10 text attributes and 2	
numeric	Can inherit metadata in collection hierarchy
Support for annotating data sets	Can associate "free form" annotation with data sets/collections
Store and utilize resource metadata, e.g. resource capacity (in	
bytes), latency, bandwidth	Enables "intelligent" selection of resource and data set
Ability to manage individual users and groups	Provides sophisticated authentication and access control mechanisms
Ability to assign roles to users, e.g. "regular user", Curator, SRB	Supports multiple roles for individual users, enabling complex,
Administrator	collaboration environments
Customizable attribute sets	Allows a curator to add new attributes to a collection

Functionality	Benefit to user
CLIENT SUPPORT	
C/C++ client libraries, and utilities, for Sun, AIX, Unicos, Irix,	
Linux, NT, NT/2000	Can log in from a variety of clients
Client GUI browser for NT/2000	Provides familiar folder abstraction for collections and data sets
Java browser	Provides folder abstraction on Java platforms
Utility to batch-load containers	Allows efficient bulk loading/registration of data
Web interface	Provides Web-based access to metadata and data
SQL interface support for RDBMS storage resources	Allows DBMS-style row-based access to data stored in a database
	Enables use of SRB with existing/legacy UNIX utilities and apps. No
Seamless broker. Provides "transparency" in accessing data sets.	SRB "learning curve".
Template language support for style sheets	Allows data to be returned as HTML, XML
Template language rule support for data ingestion into a database	Allows HTML, XML, etc. data to be ingested as rows

Functionality	Benefit to user
SERVER SUPPORT	
MCAT Server for Sun/Oracle, AIX/DB2, NT/Oracle, DB2v7	Allows use of MCAT
SRB Server for Sun, AIX, Unicos, Irix, NT, Linux	Allows use of SRB
Data resource servers for Unix filesystem, NTFS, DPSS, ADSM,	
HPSS, UniTree, FTP, HTTP, DB2 UDB, Oracle	Access to heterogeneous storage resources
	Provides control over level of access to each resource based on
Resource access control	user, group.
	Provides control over type of access to collections and/or data sets
Access control over collections and data sets	based on user and/or groups
Ticket based access	Provides flexible access control policies
Audit trails for auditing data sets accesses	Provides details on system activity at data set level
Encrypted password-based authentication	Provides support for standard UNIX-style authentication
GSI authentication interoperability	Can authenticate using GSI system
PKI authentication	Can authenticate using PKI
	Improves performance due to server-side processing, or "function-
SRB Servelet support (remote proxy operations)	shipping"
Metadata for defining SRB Servelet parameters for remote proxies	Allows easy selection and use of SRB Servelets
GUI for system administration	GUI-based admin
SRB monitor for checking and restarting distributed servers	Allows easy monitoring of overall distributed system
Pre-spawned server to improve performance	Improves performance by reducing latency on initial connect to SRB

Further Information

http://www.npaci.edu/DICE

